Quickstart#

Prerequisites#

Supported Devices#

  • Atlas A2 Training series (Atlas 800T A2, Atlas 900 A2 PoD, Atlas 200T A2 Box16, Atlas 300T A2)

  • Atlas 800I A2 Inference series (Atlas 800I A2)

Setup environment using container#

# Update DEVICE according to your device (/dev/davinci[0-7])
export DEVICE=/dev/davinci0
# Update the vllm-ascend image
export IMAGE=quay.io/ascend/vllm-ascend:v0.9.0rc2
docker run --rm \
--name vllm-ascend \
--device $DEVICE \
--device /dev/davinci_manager \
--device /dev/devmm_svm \
--device /dev/hisi_hdc \
-v /usr/local/dcmi:/usr/local/dcmi \
-v /usr/local/bin/npu-smi:/usr/local/bin/npu-smi \
-v /usr/local/Ascend/driver/lib64/:/usr/local/Ascend/driver/lib64/ \
-v /usr/local/Ascend/driver/version.info:/usr/local/Ascend/driver/version.info \
-v /etc/ascend_install.info:/etc/ascend_install.info \
-v /root/.cache:/root/.cache \
-p 8000:8000 \
-it $IMAGE bash
# Install curl
apt-get update -y && apt-get install -y curl
# Update DEVICE according to your device (/dev/davinci[0-7])
export DEVICE=/dev/davinci0
# Update the vllm-ascend image
export IMAGE=quay.io/ascend/vllm-ascend:v0.9.0rc2-openeuler
docker run --rm \
--name vllm-ascend \
--device $DEVICE \
--device /dev/davinci_manager \
--device /dev/devmm_svm \
--device /dev/hisi_hdc \
-v /usr/local/dcmi:/usr/local/dcmi \
-v /usr/local/bin/npu-smi:/usr/local/bin/npu-smi \
-v /usr/local/Ascend/driver/lib64/:/usr/local/Ascend/driver/lib64/ \
-v /usr/local/Ascend/driver/version.info:/usr/local/Ascend/driver/version.info \
-v /etc/ascend_install.info:/etc/ascend_install.info \
-v /root/.cache:/root/.cache \
-p 8000:8000 \
-it $IMAGE bash
# Install curl
yum update -y && yum install -y curl

The default workdir is /workspace, vLLM and vLLM Ascend code are placed in /vllm-workspace and installed in development mode(pip install -e) to help developer immediately take place changes without requiring a new installation.

Usage#

You can use Modelscope mirror to speed up download:

export VLLM_USE_MODELSCOPE=true

There are two ways to start vLLM on Ascend NPU:

With vLLM installed, you can start generating texts for list of input prompts (i.e. offline batch inferencing).

Try to run below Python script directly or use python3 shell to generate texts:

from vllm import LLM, SamplingParams

prompts = [
    "Hello, my name is",
    "The future of AI is",
]
sampling_params = SamplingParams(temperature=0.8, top_p=0.95)
# The first run will take about 3-5 mins (10 MB/s) to download models
llm = LLM(model="Qwen/Qwen2.5-0.5B-Instruct")

outputs = llm.generate(prompts, sampling_params)

for output in outputs:
    prompt = output.prompt
    generated_text = output.outputs[0].text
    print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")

vLLM can also be deployed as a server that implements the OpenAI API protocol. Run the following command to start the vLLM server with the Qwen/Qwen2.5-0.5B-Instruct model:

# Deploy vLLM server (The first run will take about 3-5 mins (10 MB/s) to download models)
vllm serve Qwen/Qwen2.5-0.5B-Instruct &

If you see log as below:

INFO:     Started server process [3594]
INFO:     Waiting for application startup.
INFO:     Application startup complete.
INFO:     Uvicorn running on http://0.0.0.0:8000 (Press CTRL+C to quit)

Congratulations, you have successfully started the vLLM server!

You can query the list the models:

curl http://localhost:8000/v1/models | python3 -m json.tool

You can also query the model with input prompts:

curl http://localhost:8000/v1/completions \
    -H "Content-Type: application/json" \
    -d '{
        "model": "Qwen/Qwen2.5-0.5B-Instruct",
        "prompt": "Beijing is a",
        "max_tokens": 5,
        "temperature": 0
    }' | python3 -m json.tool

vLLM is serving as background process, you can use kill -2 $VLLM_PID to stop the background process gracefully, it’s equal to Ctrl-C to stop foreground vLLM process:

  VLLM_PID=$(pgrep -f "vllm serve")
  kill -2 "$VLLM_PID"

You will see output as below:

INFO:     Shutting down FastAPI HTTP server.
INFO:     Shutting down
INFO:     Waiting for application shutdown.
INFO:     Application shutdown complete.

Finally, you can exit container by using ctrl-D.