Environment Variables

Environment Variables#

vllm-ascend uses the following environment variables to configure the system:


env_variables: Dict[str, Callable[[], Any]] = {
    # max compile thread number for package building. Usually, it is set to
    # the number of CPU cores. If not set, the default value is None, which
    # means all number of CPU cores will be used.
    "MAX_JOBS":
    lambda: os.getenv("MAX_JOBS", None),
    # The build type of the package. It can be one of the following values:
    # Release, Debug, RelWithDebugInfo. If not set, the default value is Release.
    "CMAKE_BUILD_TYPE":
    lambda: os.getenv("CMAKE_BUILD_TYPE"),
    # Whether to compile custom kernels. If not set, the default value is True.
    # If set to False, the custom kernels will not be compiled. Please note that
    # the sleep mode feature will be disabled as well if custom kernels are not
    # compiled.
    "COMPILE_CUSTOM_KERNELS":
    lambda: bool(int(os.getenv("COMPILE_CUSTOM_KERNELS", "1"))),
    # The CXX compiler used for compiling the package. If not set, the default
    # value is None, which means the system default CXX compiler will be used.
    "CXX_COMPILER":
    lambda: os.getenv("CXX_COMPILER", None),
    # The C compiler used for compiling the package. If not set, the default
    # value is None, which means the system default C compiler will be used.
    "C_COMPILER":
    lambda: os.getenv("C_COMPILER", None),
    # Whether to enable the topk optimization. It's disabled by default for experimental support
    # We'll make it enabled by default in the future.
    "VLLM_ASCEND_ENABLE_TOPK_OPTIMIZE":
    lambda: bool(int(os.getenv("VLLM_ASCEND_ENABLE_TOPK_OPTIMIZE", '0'))),
    # The version of the Ascend chip. If not set, the default value is
    # ASCEND910B1. It's used for package building. Please make sure that the
    # version is correct.
    "SOC_VERSION":
    lambda: os.getenv("SOC_VERSION", "ASCEND910B1"),
    # If set, vllm-ascend will print verbose logs during compilation
    "VERBOSE":
    lambda: bool(int(os.getenv('VERBOSE', '0'))),
    # The home path for CANN toolkit. If not set, the default value is
    # /usr/local/Ascend/ascend-toolkit/latest
    "ASCEND_HOME_PATH":
    lambda: os.getenv("ASCEND_HOME_PATH", None),
    # The path for HCCN Tool, the tool will be called by disaggregated prefilling
    # case.
    "HCCN_PATH":
    lambda: os.getenv("HCCN_PATH", "/usr/local/Ascend/driver/tools/hccn_tool"),
    # The path for HCCL library, it's used by pyhccl communicator backend. If
    # not set, the default value is libhccl.so。
    "HCCL_SO_PATH":
    # The prefill device id for disaggregated prefilling case.
    lambda: os.environ.get("HCCL_SO_PATH", None),
    "PROMPT_DEVICE_ID":
    lambda: os.getenv("PROMPT_DEVICE_ID", None),
    # The decode device id for disaggregated prefilling case.
    "DECODE_DEVICE_ID":
    lambda: os.getenv("DECODE_DEVICE_ID", None),
    # The port number for llmdatadist communication. If not set, the default
    # value is 26000.
    "LLMDATADIST_COMM_PORT":
    lambda: os.getenv("LLMDATADIST_COMM_PORT", "26000"),
    # The wait time for llmdatadist sync cache. If not set, the default value is
    # 5000ms.
    "LLMDATADIST_SYNC_CACHE_WAIT_TIME":
    lambda: os.getenv("LLMDATADIST_SYNC_CACHE_WAIT_TIME", "5000"),
    # The version of vllm is installed. This value is used for developers who
    # installed vllm from source locally. In this case, the version of vllm is
    # usually changed. For example, if the version of vllm is "0.9.0", but when
    # it's installed from source, the version of vllm is usually set to "0.9.1".
    # In this case, developers need to set this value to "0.9.0" to make sure
    # that the correct package is installed.
    "VLLM_VERSION":
    lambda: os.getenv("VLLM_VERSION", None),
    # Whether to enable the trace recompiles from pytorch.
    "VLLM_ASCEND_TRACE_RECOMPILES":
    lambda: bool(int(os.getenv("VLLM_ASCEND_TRACE_RECOMPILES", '0'))),
    "VLLM_ASCEND_ENABLE_DBO":
    lambda: bool(int(os.getenv("VLLM_ASCEND_ENABLE_DBO", '0'))),
    # Whether to enable the model execute time observe profile. Disable it when
    # running vllm ascend in production environment.
    "VLLM_ASCEND_MODEL_EXECUTE_TIME_OBSERVE":
    lambda: bool(int(os.getenv("VLLM_ASCEND_MODEL_EXECUTE_TIME_OBSERVE", '0'))
                 ),
    # VLLM_ASCEND_MOE_ALL2ALL_BUFFER:
    #   0: default, normal init.
    #   1: enable moe_all2all_buffer.
    "VLLM_ASCEND_MOE_ALL2ALL_BUFFER":
    lambda: bool(int(os.getenv("VLLM_ASCEND_MOE_ALL2ALL_BUFFER", '0'))),
    # Some models are optimized by vllm ascend. While in some case, e.g. rlhf
    # training, the optimized model may not be suitable. In this case, set this
    # value to False to disable the optimized model.
    "USE_OPTIMIZED_MODEL":
    lambda: bool(int(os.getenv('USE_OPTIMIZED_MODEL', '1'))),
    # `LLMDataDistCMgrConnector` required variable. `DISAGGREGATED_PREFILL_RANK_TABLE_PATH` is
    # used for llmdatadist to build the communication topology for kv cache transfer, it is
    # a required variable if `LLMDataDistCMgrConnector` is used as kv connector for disaggregated
    # pd. The rank table can be generated by adopting the script `gen_ranktable.sh`
    # in vllm_ascend's example folder.
    "DISAGGREGATED_PREFILL_RANK_TABLE_PATH":
    lambda: os.getenv("DISAGGREGATED_PREFILL_RANK_TABLE_PATH", None),
    # `LLMDataDistCMgrConnector` required variable. `VLLM_ASCEND_LLMDD_RPC_IP` is used as the
    # rpc communication listening ip, which will be used to receive the agent metadata from the
    # remote worker.
    "VLLM_ASCEND_LLMDD_RPC_IP":
    lambda: os.getenv("VLLM_ASCEND_LLMDD_RPC_IP", "0.0.0.0"),
    # `LLMDataDistCMgrConnector` required variable. `VLLM_LLMDD_RPC_PORT` is used as the
    # rpc communication listening port, which will be used to receive the agent metadata from the
    # remote worker.
    "VLLM_LLMDD_RPC_PORT":
    lambda: int(os.getenv("VLLM_LLMDD_RPC_PORT", 5557)),
    # `LLMDataDistCMgrConnector` required variable. Time (in seconds) after which the KV cache on the producer side is
    # automatically cleared if no READ notification is received from the consumer.
    # `VLLM_LLMDD_ABORT_REQUEST_TIMEOUT` is only applicable when using LLMDataDistCMgrConnector in a
    # disaggregated decode-prefill setup.
    "VLLM_LLMDD_ABORT_REQUEST_TIMEOUT":
    lambda: int(os.getenv("VLLM_LLMDD_ABORT_REQUEST_TIMEOUT", 300)),
    # Whether to enable mla_pa for deepseek mla decode, this flag will be removed after its available torch_npu is public accessible
    # and the mla_pa will be the default path of deepseek decode path.
    "VLLM_ASCEND_MLA_PA":
    lambda: int(os.getenv("VLLM_ASCEND_MLA_PA", 0)),
    # VLLM_ASCEND_ENABLE_MOE_ALL2ALL_SEQ:
    #   0: default, normal init.
    #   1: enable moe all2all seq.
    "VLLM_ASCEND_ENABLE_MOE_ALL2ALL_SEQ":
    lambda: bool(int(os.getenv('VLLM_ASCEND_ENABLE_MOE_ALL2ALL_SEQ', '0'))),
    # ENABLE chunk mc2
    "VLLM_ASCEND_ENABLE_CHUNK_MC2":
    lambda: bool(int(os.getenv("VLLM_ASCEND_ENABLE_CHUNK_MC2", "0"))),
    # Batch MC2 in prefill: The number of tokens in each batch
    "VLLM_ASCEND_FUSED_MOE_MC2_CHUNK_SIZE":
    lambda: int(os.getenv("VLLM_ASCEND_FUSED_MOE_MC2_CHUNK_SIZE", "128")),
    # FlashComm optimization: Enable v1 and v2 by setting this flag to 1 or 2 respectively
    "VLLM_ASCEND_ENABLE_FLASHCOMM":
    lambda: int(os.getenv("VLLM_ASCEND_ENABLE_FLASHCOMM", '0')),
    # The tolerance of the kv cache size, if the difference between the
    # actual kv cache size and the cached kv cache size is less than this value,
    # then the cached kv cache size will be used.
    "VLLM_ASCEND_KV_CACHE_MEGABYTES_FLOATING_TOLERANCE":
    lambda: int(
        os.getenv("VLLM_ASCEND_KV_CACHE_MEGABYTES_FLOATING_TOLERANCE", '0')),
    # VLLM_DP_SIZE_LOCAL: used for external data parallelism in vllm-ascend to specify the local parallel size of current node, 0.9.1 specific.
    "VLLM_DP_SIZE_LOCAL":
    lambda: int(os.getenv("VLLM_DP_SIZE_LOCAL", '0')),
    # VLLM_ASCEND_EXTERNAL_DP_LB_ENABLED: used for external distributed data parallelism in vllm-ascend, 0.9.1 specific.
    "VLLM_ASCEND_EXTERNAL_DP_LB_ENABLED":
    lambda: bool(int(os.getenv("VLLM_ASCEND_EXTERNAL_DP_LB_ENABLED", '0'))),
}