Multi-NPU (QwQ 32B)#
Run vllm-ascend on Multi-NPU#
Run docker container:
# Update the vllm-ascend image
export IMAGE=quay.io/ascend/vllm-ascend:v0.9.0rc2
docker run --rm \
--name vllm-ascend \
--device /dev/davinci0 \
--device /dev/davinci1 \
--device /dev/davinci2 \
--device /dev/davinci3 \
--device /dev/davinci_manager \
--device /dev/devmm_svm \
--device /dev/hisi_hdc \
-v /usr/local/dcmi:/usr/local/dcmi \
-v /usr/local/bin/npu-smi:/usr/local/bin/npu-smi \
-v /usr/local/Ascend/driver/lib64/:/usr/local/Ascend/driver/lib64/ \
-v /usr/local/Ascend/driver/version.info:/usr/local/Ascend/driver/version.info \
-v /etc/ascend_install.info:/etc/ascend_install.info \
-v /root/.cache:/root/.cache \
-p 8000:8000 \
-it $IMAGE bash
Setup environment variables:
# Load model from ModelScope to speed up download
export VLLM_USE_MODELSCOPE=True
# Set `max_split_size_mb` to reduce memory fragmentation and avoid out of memory
export PYTORCH_NPU_ALLOC_CONF=max_split_size_mb:256
Online Inference on Multi-NPU#
Run the following script to start the vLLM server on Multi-NPU:
vllm serve Qwen/QwQ-32B --max-model-len 4096 --port 8000 -tp 4
Once your server is started, you can query the model with input prompts
curl http://localhost:8000/v1/completions \
-H "Content-Type: application/json" \
-d '{
"model": "Qwen/QwQ-32B",
"prompt": "QwQ-32B是什么?",
"max_tokens": "128",
"top_p": "0.95",
"top_k": "40",
"temperature": "0.6"
}'
Offline Inference on Multi-NPU#
Run the following script to execute offline inference on multi-NPU:
import gc
import torch
from vllm import LLM, SamplingParams
from vllm.distributed.parallel_state import (destroy_distributed_environment,
destroy_model_parallel)
def clean_up():
destroy_model_parallel()
destroy_distributed_environment()
gc.collect()
torch.npu.empty_cache()
prompts = [
"Hello, my name is",
"The future of AI is",
]
sampling_params = SamplingParams(temperature=0.6, top_p=0.95, top_k=40)
llm = LLM(model="Qwen/QwQ-32B",
tensor_parallel_size=4,
distributed_executor_backend="mp",
max_model_len=4096)
outputs = llm.generate(prompts, sampling_params)
for output in outputs:
prompt = output.prompt
generated_text = output.outputs[0].text
print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
del llm
clean_up()
If you run this script successfully, you can see the info shown below:
Prompt: 'Hello, my name is', Generated text: ' Daniel and I am an 8th grade student at York Middle School. I'
Prompt: 'The future of AI is', Generated text: ' following you. As the technology advances, a new report from the Institute for the'