Multi-NPU (QwQ 32B)#

Run vllm-ascend on Multi-NPU#

Run docker container:

# Update the vllm-ascend image
export IMAGE=quay.io/ascend/vllm-ascend:v0.9.0rc2
docker run --rm \
--name vllm-ascend \
--device /dev/davinci0 \
--device /dev/davinci1 \
--device /dev/davinci2 \
--device /dev/davinci3 \
--device /dev/davinci_manager \
--device /dev/devmm_svm \
--device /dev/hisi_hdc \
-v /usr/local/dcmi:/usr/local/dcmi \
-v /usr/local/bin/npu-smi:/usr/local/bin/npu-smi \
-v /usr/local/Ascend/driver/lib64/:/usr/local/Ascend/driver/lib64/ \
-v /usr/local/Ascend/driver/version.info:/usr/local/Ascend/driver/version.info \
-v /etc/ascend_install.info:/etc/ascend_install.info \
-v /root/.cache:/root/.cache \
-p 8000:8000 \
-it $IMAGE bash

Setup environment variables:

# Load model from ModelScope to speed up download
export VLLM_USE_MODELSCOPE=True

# Set `max_split_size_mb` to reduce memory fragmentation and avoid out of memory
export PYTORCH_NPU_ALLOC_CONF=max_split_size_mb:256

Online Inference on Multi-NPU#

Run the following script to start the vLLM server on Multi-NPU:

vllm serve Qwen/QwQ-32B --max-model-len 4096 --port 8000 -tp 4

Once your server is started, you can query the model with input prompts

curl http://localhost:8000/v1/completions \
    -H "Content-Type: application/json" \
    -d '{
        "model": "Qwen/QwQ-32B",
        "prompt": "QwQ-32B是什么?",
        "max_tokens": "128",
        "top_p": "0.95",
        "top_k": "40",
        "temperature": "0.6"
    }'

Offline Inference on Multi-NPU#

Run the following script to execute offline inference on multi-NPU:

import gc

import torch

from vllm import LLM, SamplingParams
from vllm.distributed.parallel_state import (destroy_distributed_environment,
                                             destroy_model_parallel)

def clean_up():
    destroy_model_parallel()
    destroy_distributed_environment()
    gc.collect()
    torch.npu.empty_cache()

prompts = [
    "Hello, my name is",
    "The future of AI is",
]
sampling_params = SamplingParams(temperature=0.6, top_p=0.95, top_k=40)
llm = LLM(model="Qwen/QwQ-32B",
          tensor_parallel_size=4,
          distributed_executor_backend="mp",
          max_model_len=4096)

outputs = llm.generate(prompts, sampling_params)
for output in outputs:
    prompt = output.prompt
    generated_text = output.outputs[0].text
    print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")

del llm
clean_up()

If you run this script successfully, you can see the info shown below:

Prompt: 'Hello, my name is', Generated text: ' Daniel and I am an 8th grade student at York Middle School. I'
Prompt: 'The future of AI is', Generated text: ' following you. As the technology advances, a new report from the Institute for the'